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1 Introduction

Road traff c accident is one of the main causes of
injuries and fatalities worldwide. According to the
World Medical Association, (2006), [1], serious in-
juries and mortality in road collisions are a public
health problem with consequences similar to those of
major diseases such as cancer and cardiovascular dis-
ease. It is estimated that road traff c accident will be-
come the 6th leading cause of death in the world and
take the 3rd place of disability by the year 2020, [2].
Injuries, deaths and disabilities resulting are consid-
ered as a major public heath concerns to which inade-
quate attention has been paid so far, [3], [4].

Road traff c accidents has a decreasing trend in
developed countries, but a higher number of injuries
is reported in developing nations, [4], [5], [6], [7]. In-
juries due to road traff c accidents are one of the main
health care problems, which are preventable as the ex-
perience of many developed countries. The prevention
and control of health events implies implementation
of appropriate programs, and adoption of laws (e.g.
seat belt law among others) in the legislation on the
mortalities resulting from car accidents, etc. Trend as-
sessment and forecasting the data can provide useful
information to increase the quality of decision in this
f eld. There are different statistical methods to fore-
cast mortality and serious injuries resulting from traf-
f c accidents. A such statistical method is time series
analysis, whose main purpose is modeling and fore-

casting of data provided from road traff c accidents.
A time series is def ned as a sequence of measure-

ments, usually equally spaced and ordered in time.
Statistical methods applied to time series data were
originally developed mainly in econometrics, but they
are used in many other f elds, such as physics and en-
gineering, environment, medicine, etc. The f rst appli-
cations in this f eld were in forecasting, the purpose
being to produce an accurate forecast of the future
data or measurements for an observed time series.

Applications of time series analysis in road traff c
mortality and serious injuries are reported in [8], [9],
[10], among others.

The paper is organized as follows. In Section 2
is given a general view on the time series models, re-
gression and intervention models, to be used in mod-
eling and forecasting of road traff c injuries. Section
3 discusses some methodological aspects of time se-
ries modeling and forecasting, based on Box-Jenkins
methodology, with the emphasis on practical aspects.
Section 4 presents a case study using a multiplica-
tive ARIMA model for a time series representing the
number of mortal traff c accidents, monthly recorded,
in USA in the period 1973-1978, while the Section 5
has as object modeling of a interrupted time series,
an example of intervention analysis, using the road
traff c accidents with death and serious injuries in the
UK, before and after the imposition of the Arabian
embargo in November 1973.
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2 Time series models

The statistical approaches adopted in time series
modeling and forecasting usually rely on multiplica-
tive SARIMA (Seasonal Auto Regressive Integrated
Moving Average) model. A such model has the fol-
lowing form for the time series zt, [11]:

φ(B)Φ(Bs)▽d ▽D
s zt = θ(B)Θ(Bs)at (1)

where at is a white noise and

φ(B) = 1 + φ1B + φ2B
2 + · · · + φpB

p;

θ(B) = 1 + θ1B + θ2B
2 + · · · + θqB

q;

Φ(Bs) = 1 + ΦsB
s +Φ2sB

2s + . . .+ΦPsB
Ps;

Θ(Bs) = 1 + ΘsB
s +Θ2sB

2s + . . .+ΘQsB
Qs;

with B the time delay operator, Bzt = zt−1, ▽zt =
(1 −B) = zt − zt−1, nonseasonal differentiating op-
erator, and ▽szt = (1 − Bs) = zt − zt−s, seasonal
differentiating operator: d is the nonseasonal differ-
entiating order, D is the seasonal differentiating order
and s is the seasonal period of the series.

The model is def ned as
SARIMA(p, d, q)(P,D,Q)s where (p, d, q) denotes
nonseasonal orders, and (P,D,Q) seasonal order of
the model. The model is presented in Fig. 1.

at- θ(B)Θ(Bs)
▽dφ(B)▽DΦ(Bs)

zt-

Figure 1: Multiplicative model SARIMA

(p, d, q)(P,D,Q)s

The multiplicative form of the model simplif es
the stationarity and invertibility conditions checking;
these conditions can be separately checked, for sea-
sonal and nonseasonal coeff cients of the model.

Starting from the general model form of the
model SARIMA it can be obtain related models: AR
(Auto Regressive), MA (Moving Average), ARMA
(Auto Regressive Moving Average) and ARIMA
(Auto Regressive Integrated Moving Average), with
or without seasonal components. These models are
identif ed by the mean of the autocorrelation (ACF )
and the partial autocorrelation functions (PACF ).

In some situations, it is known that some external
events can affect the variables for which the practi-
tioner intends to forecast the future time series val-
ues. Dynamic models, used in this case, include sev-
eral variables, as input variables, which are intended
to take into account in the dynamics model, the men-
tioned exception events. A special kind of SARIMA
model with input series is called an intervention model
or interrupted time series (ITS) model, [12]. In an in-
tervention model, the input series is an indicator vari-
able that contains discrete values that f ag the occur-
rence of an event affecting the response series. This
event is an intervention in or an interruption of the
normal evolution of the response time series, which,
in the absence of the intervention, is usually assumed
to be a pure SARIMA process. As examples of prac-
tical interventions can be mentioned: the effect of dif-
ferent promotions activities on the sales, the effect of
strikes on the volume of the products and the price of
the products, the effect of medication on the health
of the patient, the effect of the exchange of the laws
in the legislation on the mortalities resulting from car
accidents, etc. In this case, some variables as step
function, consisting of ”zero” values and ”unit” val-
ues, before and after application respectively change
policy, medication, or exchange of laws are included
in the model, as an external variable.

A such intervention model can be represented like
a transfer function (TF ) model (see Fig. 2), where zt
is the value of the endogenous variable at time t, ut =
[u1t, . . . , urt]

T is the vector of exogenous variables,
and at is a white noise error.

Ωi(B) = ωi0 + ωi1B + ωi2B
2 + · · · + ωini

Bni; i =
1, 2, . . . , r

∆i(B) = 1 + δi1B + θi2B
2 + · · · + δinδiB

nδi ; i =
1, 2, . . . , r

φ(B), θ(B),Φ(Bs) and Θ(Bs) have been described
above.

3 Methodological Aspects

The time series model construction usually include the
following stages, [11]:

• Identif cation (specif cation) of the time series
model using some data analysis tools (different
graphical representations, autocorrelation func-
tions (ACF ) and partial autocorrelation func-
tions (PACF )) in order to determine the types
of transformations to obtain stationarity and to
estimate the degree of differentiation needed to
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Figure 2: Transfer function (TF ) model

induce stationarity in data, as well as the polyno-
mial degrees of autoregressive and moving aver-
age operators in the model.

• Model parameter estimation of the time series
implies the use of eff cient methods (such as
maximum likelihood, among others) for parame-
ter estimation, standard errors and their correla-
tions, dispersion of residuals, etc.

• Model evaluation (validation) aims to establish
the model suitability, or to make some simplif -
cations in structure and parameter estimates. Key
elements for model validation refers to residuals
which can not be justif ed, these being any resid-
uals of abnormal value that can not be explained
by the action of known external factors or other
variables; also the correlations and partial cor-
relations of the residuals prove useful tools in
model evaluation.

More explanations of the process, e.g. [13], often
add a preliminary stage of data preparation and a f nal
stage of model application, or forecasting.

Visual analysis of series data allows a f rst image
on the series’ non-stationarity and on the presence of
a seasonal pattern in the data. The f nal decision on
the inclusion of seasonal elements in the time series
model will be taken after the autocorrelation function
(ACF ) and partial autocorrelation function (PACF )
analysis, as well as after the estimation results analy-
sis; the visual analysis of the data can provide useful
additional information.

Signif cant changes in the mean value of the se-
ries data require non seasonal differentiation of the
f rst order, while the varying of the rate for average
value imposes the nonseasonal differentiation of the
second order of the series. Strong seasonal variations
usually require, not more than the seasonal differenti-
ation of the f rst order of the series’data. Autocorre-
lation function of the series offers information on the
nonseasonal and seasonal degrees to be used to obtain
the stationarity of the data.

An ARMA stationary process is characterized by
theoretical autocorrelation and partial autocorrelation
functions tending to zero. The autocorrelation func-
tion tends to zero after the f rst q− p values of the de-
lay, following the evolution of a exponential function
or of a damped sinusoidal function, and the partial au-
tocorrelation function is canceled after the f rst p − q
values of the delay, [14].

An AR or MA seasonal process is characterized
by similar autocorrelation and partial autocorrelation
functions, corresponding to nonseasonal processes,
but the coeff cients of autocorrelation and partial auto-
correlation functions, signif cant for the seasonal pro-
cess, appear at multiple seasonal delay values.

At the stage of model identif cation a special at-
tention will be given to nonseasonal autocorrelation
coeff cients with absolute values of the associated t
statistic test exceeding the value 1.6, [14]. Model pa-
rameters, associated to these coeff cients prove to be
signif cant from the statistical point of view, in the es-
timation stage.

In the identif cation and validation-diagnosis
stages, the attention will be focused on the coeff cients
of seasonal autocorrelations with the absolute values
of the t statistic test associated which overcome 1.25
value. The seasonal parameters estimates AR or MA
, associated to these coeff cients, will appear more sig-
nif cant in the estimation stage. If the residual auto-
correlation function has zeros values, from statistical
point of view, to seasonal delays: s, 2s, . . . , and to the
delays of the form 0.5s, 1.5s, and in the vicinity of
seasonal delays: s+ 1, s − 1, 2s + 1, 2s − 1, . . . , the
same warning level will be used: 1.25. More informa-
tion on the methodology used in this case can be f nd
in [14] and [15].

In the estimation stage, the use of the initial es-
timates of the model parameters of the value of 0.1
leads to good results in most cases; better initial esti-
mates for model parameters can be obtained based on
the autocorrelation and partial autocorrelation func-
tions, used to determine the structure of the model.
In this stage as model parameters will be retain those
for which |t| ≥ 2, [14]. The criteria Akaike Infor-
mation Criterion (AIC), Bayesian information crite-
rion (BIC) or Schwarz information criterion (also SIC,
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SBC, SBIC), [16], Adjusted Root Mean Square Error
(ARMSE) and Absolute Mean Percent Error (AMPE),
[14], offer information on the parameter estimation
quality.

Forecasting is what the whole procedure is de-
signed to accomplish. Once the model has been se-
lected, estimated and checked, it is usually a straight
forward task to compute forecasts. The forecasting
problem can be solved, in the most direct way, us-
ing the multiplicative ARIMA model of the form (1).
The description of the model by an inf nitely weighted
sum of current values and the earlier noise is prov-
ing useful, in particular, to estimate the variance of
forecasting values, as well as to determine their con-
f dence intervals. Standards and practices for time se-
ries forecasting are given in [17].

Different forecasting applications, for technical
and non-technical systems, using other models, are re-
ported in literature, e.g. [18], [19], [20], among oth-
ers.

4 Road Traffic Accidents with Death
in the USA

The analyzed time series represents the number of
mortal traff c accidents, monthly recorded, in USA in
the period 1973-1978, [15]. The time series contains
72 values and is represented in Fig. 2.
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Figure 3: Number of mortal traff c accidents, monthly
recorded, in USA: 1973-1978.

The series presents a strong seasonal pattern, with
maximum and minimum values in each year, in July
and in February, respectively. The presence of a trend
component in data is not very clear.

4.1 Model Identification

The estimated ACF of the original time series is pre-
sented in Fig. 3 and points out the non-stationarity in

mean value of data, as well as the presence of a sea-
sonal components of period s = 12.

The series of nonseasonal differences (1 − B)zt
is given in Fig. 4.
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Figure 4: Series of nonseasonal differences wt = (1−
B)zt.

From ACF analysis, it an be noted the stationar-
ity in mean value of data series and the presence of a
seasonal component of period s = 12, that imposes
data seasonal differentiation of (1 −B)zt series. The
resulted series wt = (1−B12)(1−B)zt is presented
in Fig. 5.

-1000

-500

0

500

1000

1500

10 20 30 40 50 60 70 80

o

o
o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o
o

o

o

o o

o

o

o

o
o

o

o o

o

o

o

o

o

o

o

o

o

o

Figure 5: Series wt = (1−B12)(1−B)zt.

It can be noted a data variance decreasing, that
justif es the last differentiation operation, but an in-
creasing of the mean value of the series from 3.281
to 28.830, signif cant reporting to standard deviation
value; this suggest to include a constant term, θ0, in
the model structure.

The analysis of the f rst 11 coeff cients of ACF
of {wt} series concludes that only the f rst autocorre-
lation coeff cient is signif cant different from 0, from
statistical point of view; this suggest to chose for
the nonseasonal component of series in multiplica-
tive ARIMA model of a MA(1) factor of the form
(1 − θ1B). This hypothesis is according with slow
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damping of the ACF for reduced values of the delay.
The estimation of the ACF values for the delays

12, 24, 36: −0.333, −0.099 and 0.013, respectively,
suggests for seasonal component of the series, in the
multiplicative ARIMA model, a MA(1)12 factor of
the form (1 − Θ12B

12); this hypothesis is according
with the slow damping of the ACF for the delays
12, 24 and 36. Consequently, we will adopt, as f rst
model form for the original series, one of the form
ARIMA(0, 1, 1)(0, 1, 1)12 with a constant term θ0:

(1−B)(1−B12)zt = θ0+(1−θ1B)(1−Θ12B
12)at

(2)

4.2 Model Parameter Estimation

Model parameter estimation results are given in Fig.
6.
Nonseasonal difference degree : 1
Seasonal difference degree : 1 Seasonal period : 12
No. of data series : 72
No. of data series actually used : 59

Model Estimated 95%
Coefficients Value t-Val. Inf.Lim Upp.Lim

=================================================================
theta 1 .432 3.511 .186 .677
Theta 12 .497 3.996 .248 .746
theta 0 26.461 1.725 -4.226 57.149

Correlation matrix of model coefficients

1 2 3
1 1.0000
2 .0076 1.0000
3 .0894 -.2046 1.0000

ARMSE: .1115907E+06 d.f.: 56
AMPE : .3005798E+01

Figure 6: Parameter estimates for model
ARIMA(0, 1, 1)(0, 1, 1)12 with a constant term
θ0.

Model coeff cient estimates are signif cantly dif-
ferent from 0, from statistical point of view, with ab-
solute values of test statistics t, for a signif cance level
of 5%, over critical value 2.0, excepting the coef-
f cient θ0, slightly below this value (1.725). Also,
each of the model coeff cients satisfy the invertibility
condition:|θ̂1 | < 1 and |Θ̂12| < 1, respectively. The
correlation matrix of the model coeff cients shows a
very reduced correlation between the coeff cient esti-
mates.

4.3 Model Validation

Residuals of model (2) are presented in Fig. 7.
The single value of residual ACF signif cant dif-

ferently from 0 , from statistical point of view, having
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Figure 7: Residuals for model
ARIMA(0, 1, 1)(0, 1, 1)12 with a constant term
θ0.

an absolute value of the statistic test t of 2.038, at a
signif cance level of 5%, is associated with the delay
7. How this delay is of the form 0.5s + 1 (s = 12), it
is necessary to reformulate the model of the series. A
similar peak appears at the same value of the delay in
facp. The statistics value χ2 Ljung-Box, [15], QLB

= 20.377, is not signif cant for a signif cance level of
5% and 17 degrees of freedom, and from this point of
view the model can be accepted.

4.4 Model Reformulating, Parameter Esti-
mation and Model Validation

The peak from residual ACF , which appears at de-
lay value 7, suggests inclusion in the model (2) of a
term of the form θ7B

7, resulting the following model
structure for the original data series:

(1−B)(1−B12)zt = θ0 + (1− θ1B − θ7B
7)×

×(1−Θ12B
12)at (3)

The estimation results for the model (3) are pre-
sented in Fig. 8. It can be noted a reduction of
ARMSE and AMPE criteria in comparison with pa-
rameter estimation results for model (2).

All model coeff cients have associate absolute
values of the statistic test t bigger than 2.0 and are
slow correlated. Also, it is satisf ed the necessary con-
dition for invertibility of nonseasonal model compo-
nent (θ̂1 + θ̂7 < 1), and seasonal component satisf es
invertibility condition (|Θ̂12| < 1). The model residu-
als are presented in Fig. 9.

These functions have not values to invalidate the
residuals independence, according to Section 3, and
consequently the model (3) can be accepted as model
for the original data series.
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Non-seasonal difference degree : 1
Seasonal difference degree : 1 Seasonal period : 12
No. of data series : 72
No. of data series actually used : 59

Model Estimated 95%
Coefficients Value t-Val. Inf. Lim. Upp. Lim

=================================================================
theta 1 .462 3.991 .231 .694
theta 7 .244 2.033 .004 .483
Theta 12 .536 4.285 .286 .786
theta 0 28.410 3.315 11.271 45.549

Correlation matrix of model coefficients

1 2 3 4
1 1.0000
2 .0847 1.0000
3 .2161 -.0584 1.0000
4 .1861 -.1389 .0988 1.0000

ARMSE : .1042736E+06 d.f.: 55
AMPE : .2895009E+01

Figure 8: Parameter estimates for the model
ARIMA(0, 1, 2)(0, 1, 1)12 with a constant term θ0.
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Figure 9: Residual for model
ARIMA(0, 1, 2)(0, 1, 1)12 with a constant term
θ0.

4.5 Forecasting

Series forecasting has been performed for the next 6
months using the last determined model. Forecasting
results and the real values of the series, are given nu-
merical and graphical in Fig. 10 and Fig. 11, respec-
tively.

Forcasting instant : 72

Forecasting Forecast. Real 95%
horizon Value Value Inf. Lim. Upp. Lim.
==============================================================

1 .7798E+04 .7812E+04 .8444E+04 .9075E+04
2 .7406E+04 .6995E+04 .7712E+04 .8429E+04
3 .8363E+04 .7725E+04 .8519E+04 .9312E+04
4 .8460E+04 .7916E+04 .8779E+04 .9642E+04
5 .9217E+04 .8916E+04 .9843E+04 .1077E+05
6 .9316E+04 .9318E+04 .1030E+05 .1129E+05

Figure 10: Forecasting results for a horizon of 6
months using the model ARIMA(0, 1, 2)(0, 1, 1)12
with a constant term θ0.
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Figure 11: Original series and prediction results
for model ARIMA(0, 1, 2)(0, 1, 1)12 with a constant
term θ0.

The forecasting is performed on long-term, with-
out taking into account the values of the data series,
when they became available.

5 Road Traffic Accidents with Death
and Serious Injuries in the UK

The time series making the object of the analysis is of
the form zt = (1 − B4)wt − 305.2, where {wt} rep-
resents the number of persons in road traff c accidents
in UK with death and serious injuries, registered quar-
terly, in period 1969-1983. The data {wt} come from
[21]; the data also make the object of the analysis in
[15], representing a typical case of analysis interven-
tion. The time series is represented in Fig. 12.
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Figure 12: Number of persons in road traff c accidents
in UK with death and serious injuries, registered quar-
terly: 1969-1983.

5.1 Model Identification

From Fig. 12 it can be noted the effect of an inter-
vention on data series {zt}, at the 16-th value, corre-
sponding to the imposition of the Arabian embargo in
November 1973; the series can be assimilated to an
interrupted series (ITS). The data suggest the effect of
an intervention of simple change type in level, which
can be modeled by a intervention term of the form
ωζ

(s)
t,T with ζ

(s)
t,T a step function def ned by (T = 16):

ζ
(s)
t,T =

{

0, if 1 ≤ t ≤ 15,
1, if 16 ≤ t ≤ 60.

(4)

Intervention variable, ζ(s)t,T , is represented in Fig.
13.
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Figure 13: Intervention variable ζ
(s)
t,T .

5.2 Parameter Estimation

For parameter estimation ω in the model of transfer
function type

zt = ωζ
(s)
t,T + vt (5)

has been used the least squares method (LS), resulting
the following model with exogenous variable:

zt = −485.378ζ
(s)
t,T + vt (6)

with σ̂2
v = 211370.

The model residuals are given in Fig. 14.
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Figure 14: Model residuals.

The residuals of the model (6) have been modeled
using the nonlinear least squares methods, resulting
the following model for these:

vt = at + 0.654at−1 + 0.356at−2 + (7)
+0.272at−3 − 0.430at−4

with σ̂2
a = 93673, signif cantly reduced in comparison

with σ̂2
v .

5.3 Model Validation

For the model residuals, {at}, presented in Fig. 14,
it can be noted that they do not present extreme val-
ues and variations in variance. The residual autocor-
relation function was used for the residuals indepen-
dence hypothesis checking; It can be noted that both,
the t statistics analysis, as well as Ljung-Box statistics
(QLB = 14.317 for 15 degrees of freedom) at a level
of signif cance of 5% proved this hypothesis. Con-
sequently, the resulted intervention model can be ac-
cepted for the investigated process.

5.4 Comments

Knowing the intervention model structure, the param-
eters of the global model have been directly estimated
:

zt = ωζ
(s)
t,T + vt (8)
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where vt has the structure of a MA(4) model. The
resulted model was of the form:

zt = −441.50 + at + 0.537at−1 + 0.385at−2 +(9)
+0.277at−3 − 0.423at−4

Actually tried model parameter estimation for a
more general structure which included a term of the
form φ1zt−1; this term proved to be insignif cant from
a statistical point of view. The variance of the new
residuals resulted to be σ̂2

a = 88141.600.
From the residual autocorrelation function of re-

sulted model it can be noted, by the t statistics analysis
(the values of this statistics are lower than in previ-
ous case), as well as by Ljung-Box statistics (QLB =
11.327 for 15 degrees of freedom) at a level of signif-
icance of 5%, that the resulted intervention model can
be accepted for the investigated process.

6 Conclusions

The time series analysis of road traff c accidents us-
ing multiplicative ARIMA models and the attrac-
tive features of the Box-Jenkins approach provide an
adequate description to the data in this f eld. The
ARIMA processes are a very rich class of possible
models and it is usually possible to f nd a process
which provides an adequate description to the data.
Monthly pattern was the best time process for fore-
casting. Also, the intervention analysis proved to be
a useful approach to model interrupted time series, in
this case, when such time series are generated as the
of training drivers to obey traff c laws such as using of
the seat belt, some economical constraints, etc. The
approach provides a convenient framework which al-
lows an analyst to think about the data, and to f nd
an appropriate statistical model which can be used to
help answer relevant questions about the data.
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